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ABSTRACT

We explore when and how to reward failure in a dynamic principal-agent rela-
tionship with experimentation. The agent receives flow rents from experimenta-
tion, and divides his time between searching for evidence of success and failure
about the underlying project. The principal commits in advance to rewards
conditional on the type of evidence. At each instant, the principal makes a fir-
ing decision. We show that the principal’s optimal equilibrium features a stark
reward structure—either the principal does not reward failure at all or rewards
success and failure equally.
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1. Introduction

Rewarding employees for failed ideas is becoming increasingly common. For example,
Google X, an ambitious R&D division of Google, was in the news for this practice.!
Google X is not alone in doing so. P&G has a “heroic failure award”, TATA, an Indian
conglomerate, has a “dare to try award”.? A common ingredient in these situations is
that employees have the freedom to develop innovative ideas to assess their potential
without a fear of failure. In an interview to BBC, Astro Teller of Google X says, “If you
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!For example, https://www.bbc.com/news/technology-25880738

’https://www.forbes.com/sites/jacobmorgan/2015/03/30/why-failure-is-the-best-
competitive-advantage/ e.g.
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don’t reward failure, people will hang on to a doomed idea for fear of the consequences.
That wastes time and saps an organisation’s spirit.”

In fact, when employees enjoy the freedom to develop their ideas, rewards for failures
may be all the more important to incentivize them to look for failure. For example,
consider a computer scientist working on building a prediction algorithm that im-
proves on existing algorithms by 2%. One approach may be to try different machine
learning strategies towards “success”, i.e. meeting the target. But, what if such an im-
provement is theoretically impossible? For example, a contest called “Heritage Health
Prize” was supposed to award $3mn for a prediction algorithm for patient hospitaliza-
tion. However, after two years and over 35,000 entries, reportedly, no team managed
to achieve the target error of 0.4 or lower.® Could this be because this error was
theoretically impossible to achieve? Proving so would require a completely different
strategy—that of providing a theoretical proof of the impossibility. It seems natural
that, upon furnishing such a proof of “failure”, the scientist should be rewarded.

Despite this seemingly compelling rationale, the practice of rewarding employees for
failures is far from ubiquitous. One reason could be that rewarding employees for failed
projects imposes an additional cost for an organization that can be justified only if the
gain from a successful project is sufficiently large. For example, talking about the ideas
undertaken at Google X, Teller says, “...these ideas are about huge, transformative,
disruptive change, not the marginal, incremental change of a conventional business.”.

So, why, when and how should an innovative organization reward an employee for
failure? These questions are the focus of our paper.

Toward this goal, we develop and study a novel dynamic principal-agent framework
facing a project of unknown feasibility. We answer the questions posed above. First,
the reason to reward failures is to incentivize employees to look for failures. Second,
the costs of such rewards may be worth incurring if, for example, the upside potential
of the underlying project is large, but not otherwise. Also, it may be optimal to reward
employees for failure if the employer and the employee begin their interaction with high
optimism about the project’s feasibility, but not otherwise. Third, the organization
should either not reward employees for failure at all or reward success and failure
equally.

Summary of the framework and results: We study a continuous time interac-
tion between an employer, the principal and an employee, the agent who face a project
of unknown quality, either good or bad. Both players are equally informed about the
project quality. At the start, the principal commits to two rewards—a reward amount
for “success”—a conclusive evidence that the project is good, (e.g. algorithm that
meets the improvement target) and a reward for “failure”—a conclusive evidence that
the project is bad (e.g. theoretical proof of the impossibility of an improvement). After
accepting the reward structure, the agent executes his innovation strategy—deciding

3 See http://blog.kaggle.com/2013/06/03/powerdot-awarded-500000-and-announcing-
heritage-health-prize-2-0/ and https://www.prnewswire.com/news-releases/hpn-
announces-team-powerdot-wins-500000-as-current-leader-209924971 .html
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how to split his time between looking for success and failure. We model this as split-
ting his unit resource (time) at each instant between two exponential bandits, called
arms. One is a “success” arm that produces a signal “(S)uccess” at an arrival rate pro-
portional to the resources allocated to it if and only if the project is good. The other
is a “failure” arm that produces a signal “(F)ailure” at an arrival rate proportional
to the resources allocated to it if and only if the project is bad. A signal on either
arm reveals the project quality and ends the game. Signals are public, but the agent’s
allocation choice is not observable to the principal. A success provides the knowledge
needed to implement the project which results in a lump-sum payoff to the principal.
Failure is costless in and of itself but the principal pays the reward upon failure to the
agent. The principal can terminate the relationship at any instant by firing the agent.
Also, flow costs of experimentation are borne by the principal while the agent earns
flow rents while experimenting.

Both parties have the same discounting rate and have outside options that are
normalized to zero. We are interested in the pure strategy Nash equilibria—principal’s
firing strategy (a deadline of firing the agent absent success or failure) and agent’s
experimentation strategy, that are mutual best responses. In particular, we focus
on the principal optimal equilibria—equilibria that deliver the highest value to the
principal.

The initial reward structure has two restrictions: First, the agent cannot be forced to
pay the principal under any circumstance. Second, the agent’s reward upon obtaining
success is at least as much as the flow rent of the agent. This assumption is motivated
by our interpretation of success as the principal adopting the project and employing
the agent to implement it. After having produced success, the agent continues to
receive at least the flow rent he receives during experimentation implying that the
reward to the agent on producing success cannot be less than the flow rent.*

We briefly discuss the fundamental ingredient of our modeling approach. Searching
for success or failure are two distinct activities that produce conclusive evidence. Note
that this framework makes it fundamentally different from the majority of literature
on agency problems with experimentation where, typically, conclusive evidence of only
one type is available.” We have in mind situations like the following: Consider a
computer scientist trying to build an algorithm with a set target or trying to prove,
theoretically, that the target is infeasible, or a person investigating a crime trying to
find incriminating evidence such as a camera footage establishing a person’s guilt, or
an irrefutable alibi establishing innocence. Or, imagine a research assistant helping a
professor on a conjecture that one can either prove or disprove via a counterexample.
The common features in these examples are that there is an objective state of the

4Since we normalize the rate of discounting to 1, the present discounted value of receiving the flow
rent in perpetuity is the flow rent itself.

SFor example, Keller et al. (2005) and the subsequent literature on fully revealing “success”, Keller
and Rady (2015) for conclusive “failures”. An exception is Che and Mierendorff (2016) who study a
single agent decision problem with both, conclusive success and failure technologies. We discuss it in
detail later.



world (true or false, innocent or guilty) and the strategies towards proving either state
are fundamentally different.

We first explore when will the agent be willing to look for failure? In this regard,
Proposition 3 shows that, whenever the reward for failure is strictly smaller than
the flow rent, the agent will not search for failure on-path in any equilibrium. The
intuition behind the result is the following. For any such reward and a deadline T by
the principal, the agent’s best response has a simple structure:® look for success up to
some t; < T and, if no success arrives until then, switch to looking for failure for the
remaining time.” Given this agent behavior, the principal would rather fire the agent
at t; as she only incurs costs (flow costs of experimentation, reward for failure) after
t; with no benefits.

Proposition 3 shows that, consistent with the prevailing arguments behind reward-
ing failures, it is indeed the case that the employees may “hang on to a doomed idea
for fear of the consequences” (termination in this context). However, it also shows
that if we must reward failures, such a reward must be at least as much as the flow
rent, i.e. like an employment protection.

To complete the analysis, we depart from the game momentarily to ask the following
question: If the principal could choose the experimentation strategy herself with the
condition that the reward must equal the flow rent for either a success or a failure,
what should be her optimal strategy, henceforth policy? We answer this question
in Proposition 4.° Unsurprisingly, the optimal policy is Markov in players’ belief
(probability that the project is good) and can take one of three forms in fig.1. Notice
that, as the arrows indicate, when looking for success (failure), no signal makes the
players update less (more) favourably about the project quality. As a result, beliefs
move down (up).

Proposition 5 shows that each of the above can be implemented as an equilibrium.
In (1), the “S-only policy”, the principal looks for success until the beliefs drift below
a cutoff (pg) where she quits to take her outside option. The principal can implement
this outcome by offering no reward for failure (Proposition 2).

In (2), the “FS policy”, the principal looks for failure when the beliefs are between
p and p/, and looks for a success above p/. At pf, she “freezes beliefs” —allocates
resources across looking for success and failure in a way that, absent any signal, the
beliefs remain there. Therefore, conditional on reaching p/, the belief does not move
until one of success or failure arrives. To implement this outcome, the principal would

6That a best response exists and has this structure is not obvious. However, we omit the discussion
of the intuition here. See Lemma 3 and the discussion therein for the reasoning.

"To be precise, this is true only if T is finite. If T is infinite, the agent will never search for failure.
In that case, Proposition 1 yields that employing the agent forever will not be an equilibrium.

8We omit the technical details about the characterization of the optimal policy for brevity. But,
we would like to point out that rather than reasoning through the usual HJB equations, we prove
optimality using necessary conditions for an optimal control, whose existence is guaranteed by stan-
dard results in the theory of stochastic control. Interested reader can follow the discussion after
Proposition 4 for more details.
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Figure 1: Three possible optimal policies

set the reward for success and failure equal to the flow rent and offer an infinite firing
deadline. This way, the agent is indifferent across any allocation, and therefore, can
follow the principal optimal one.

In (3), the “SFS policy”, the principal looks for success in two regions—on (p/, 1)
and (p,p’). In the middle region (py,p’), she looks for failure. Moreover, at p/, the
princi)al reezes beliefs. Here, the implementation as an equilibrium depends on the
initial belief. Notice that if the initial belief is above p;, the principal’s behavior is
as in the FS policy and, therefore, the implementation is the same as above. On the
other hand, if the initial belief is below p;, then the optimal policy is to keep looking
for success. As before, this can be implemented by not rewarding failure.

Therefore, either the principal should reward success and failure equally or not
reward failure at all. Moreover, it may be optimal for the principal to reward for
failure if the initial prior is sufficiently high (as in the SF'S case) but not otherwise.

Coming back to the points made at the beginning, Proposition 7 confirms Teller’s
insight. If the gain from a success of a good project is sufficiently high then it is
optimal to reward the agent for failure but not otherwise.” This may perhaps be the
reason why, except for giants like Google X, most other companies cannot afford to
reward for failures.

In fact, there may be another reason why we are witnessing more companies re-
warding failures. Many modern industries, even in manufacturing, rely on simulating
complex systems before deploying them. Simulations are a much faster way of learning
about possible flaws or a failure. In the context of our model, this translates to a high
arrival rate of the failure arm. And indeed, as Proposition 8 shows, if the failure arm
has a sufficiently high arrival rate then it may be optimal to reward for failures. This
may also, perhaps, be a reason behind why the “bug bounty programs”—incentives
to employees to find bugs in codes—are gaining popularity.' One could view such

9To be precise, it also requires that the failure arm has a sufficiently high arrival rate and the flow
cost of experimentation is high enough.

0For example https://techcrunch.com/2018/02/07/googles-bug-bounty-programs-paid-
out-almost-3m-in-2017
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programs as incentives for employees to report failures. in the form of bugs. One
could argue that finding bugs or flaws in a code is easier, captured through higher A,
compared to finding a flaw in some component of a manufacturing unit.

Below, we briefly discuss the related literature before presenting the model and the
analysis. Most proofs are relegated to the appendix.

Related Literature: On the problem of rewarding the agent for failure, the literature
has focused on incentivizing the agent to reveal failure that he observes privately. For
example, Levitt and Snyder (1997) show that rewarding for failure may be optimal
when the agent receives a private signal about the project quality. Hidir (2017) and
Chade and Kovrijnykh (2016)) are examples of dynamic contracting problems where
the agent has the freedom to disclose negative news. We complement this literature
by showing that, even though both actions and signals are public, the inability of the
parties to write contracts contingent on actions can deter the agent from searching
for failures. Note that the choice of specifically searching for failure is absent in the
above mentioned papers. Manso (2011) shows that, in a two period setting with full

commitment, motivating an agent to innovate may require tolerating or even rewarding
early failures. Like the ones mentioned above, this model also does not allow for a
technology to search for failures.

Our model builds on the exponential bandit models of Keller et al. (2005) and Keller
and Rady (2015), which study good and bad news arms (success and failure arms in
our context) resepectively.

Technically, the paper closest to ours is Che and Mierendorff (2016), henceforth
CM. They study a single agent decision problem (as opposed to a two player game we
have) of experimentation where the agent has the choice to look for good news and bad
news. Besides the game, our single agent setting (Proposition 4), is also fundamentally
different in a an important way. In CM, the decision maker can “adopt a project” by
quitting at any instant. The decision maker receives the expected value of the project
based on her belief at that instant. In our model, quitting without a signal yields
the outside option regardless of the beliefs. This difference generates substantially
different dynamics, e.g. the contradictory learning in their model does not happen in
our single agent version.

In a related single agent decision problem, Damiano et al. (2017) introduce an
auxiliary learning process that allows for looking for both good and bad news while
experimenting on a one arm bandit in lines of Keller et al. (2005).

Garfagnini (2011) and Guo (2016) also study a delegation game between a principal
and an agent where the agent carries out experimentation. While the contracting and
payoff environment differs, the key distinction is our focus on how the agent’s incentives
shape the dynamics when the choice of both good and bad news is available. This
tradeoff is absent in both Garfagnini (2011) and Guo (2016). As an agency problem of
collective experimentation, this paper also relates to Kuvalekar and Lipnowski (2018).
However, the efforts there are ranked in the sense of Blackwell (1953) making the
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agent’s choice, when not getting fired, straightforward—choose the least informative
action. Since the success and failure arms are not ranked in the sense of Blackwell
(1953), the dynamics are richer in our environment. Halac et al. (2016), Bergemann
and Hege (2005) and Hrner and Samuelson (2013) are other instances of contracting
problems with delegated expeirmentation with moral hazard and (or) adverse selection.

Recently, the question of information acquisition in the presence of multiple infor-
mation sources has been pursued among others by Che and Mierendorff (2016), Liang
et al. (2017), Liang and Mu (2018), Fudenberg et al. (2017), and Mayskaya (2017).
In contrast, in this paper we explore information acquisition from multiple sources of
information in a principal-agent setting where the incentives of the two parties differ.

2. Model

Players: There are two players, a principal (she) and an agent (he). Time ¢ is
continuous and runs from 0 to oo. The principal hires the agent to work on a project
of unknown quality. The quality of the project is good, 8 = 1, or bad, # = 0. At time 0
both players have a common prior on the underlying project quality: Eqf = py € (0, 1).

Actions: At each instant, the principal chooses whether to fire (a; = 0) or not to
fire the agent (a; = 1). Firing is irreversible and ends the game. Conditional on not
firing, the agent divides a unit resource between a “success” arm and a “failure” arm.
The agent’s allocation to the success arm at time ¢ is v; € [0,1], and (1 — ~;) is the
allocation to the failure arm.

Information: The principal does not observe the agent’s allocation choice. The
agent’s allocation affects the arrival rate of two exponentially distributed signals (news).
The success arm can generate a signal called S (success). The failure arm can generate
a signal F (failure). The arrival rate of an S signal is A;:6, and that of an F signal is
Ao(1 —4)(1 — ). Both signals are publicly observed. Also, notice that either signal,
S or F is conclusive: the realization of S(F) gives both players the belief p = 1(p = 0).
We denote by y; € {¢,S, F'} the signal up to time ¢, where ¢ denotes no signal. Note
that since the agent’s allocation is not observed by the principal, players may have
different posterior belief about 8 conditional on no signal.

Payoffs: At the beginning of the relationship, the principal commits to a reward
structure which specifies a payment of R® to the agent if an S signal arrives and RY
if an F signal arrives. When employed, the agent receives an exogenously specified
fixed flow wage w > 0 from the principal. The principal incurs a flow cost of ¢ > w
which we interpret as the cost of performing experimentation and the wage paid to
the agent. If S arrives, the game ends with the principal receiving a lump-sum payoft
of I'. If F arrives, the game ends with the principal receiving a lump-sum payoff of
—RY due to the promised reward to the agent. Both players discount future payoffs
at rate r. Counting time in different units we normalize r to 1.

The terminal payoffs are:



1. If principal fires the agent, both players receive 0.
2. If S arrives, the principal receives I' — R and the agent receives R®.

3. If F arrives, the principal receives —R!" and the agent receives RY.

2.1. Strategies

Since the only relevant history is one involving no signal and the agent not having
been fired, all the strategies are specified under this condition. The agent’s strategy,
which is his allocation to the success arm is a [0, 1] valued measurable process (7;):>0,
i.e. v: Ry — [0,1] is a measurable map. Let G denote the space of such [0, 1] valued
measurable maps. The principal’s strategy is a deterministic deadline T € [0, o0] at
which she fires the agent.'! If the agent plays v € G and the principal offers a deadline
T € R,, we will denote this strategy profile by (v, T).

2.2. Learning

Let P, := E; 0 be the agent’s posterior probability that § = 1 at time ¢. In the absence
of an S or F signal, the agent’s belief will evolve according to Bayes’ rule:!

dP,
S = (1= 0% — AR - P). (1)

On the other hand, since the principal does not observe ;, she may have different
belief about # at time ¢, off-path. Suppose the principal expects the agent to play
a strategy 7 Let E;50 = P;. Similar to before, her beliefs evolve as in (1) with ~,
replaced by 7;. Obviously, in equilibrium, v = 7, and therefore P, = P,.

Note that using (1) we can show that P, = 0 when v, = 7/ := /\;)ATb/\g That is, beliefs do
not move in the absence of a conclusive signal if the agent allocates 7/ to the success
arm. We call 7/ as the freezing allocation and when agent chooses v/ at some belief
p, we say that “the agent freezes beliefs at p”. Similarly, if 7, = 1 (0), we say that the

agent is “looking for success (failure)”.

2.3. Equilibrium

In equilibrium, it is necessary that ¥ = . Therefore, we will assume that to be the
case here on. Consequently, P, = P, for all t. Of course, in defining an equilibrium,

1To be precise, the principal fires the agent whenever ¢ > T. Therefore, if the principal was
supposed to fire the agent at T but did not until some ¢ > T, we assume that she will fire the agent
at t.

12Gince beliefs are a martingale, we have that Ay Pidt + (1 — [Ny P 4+ Mo (1 — y) (1 — Py)]dt) (P +
P,dt) = P,. Dividing by dt we obtain (1).



we would need to ensure the optimality of v from the agent’s perspective given the
deadline 7" and the reward structure (R, F).

Define, 7 := inf{t > 0 : y, € {S,F}} AT. Suppose P, = p. Given the strategy
profile (T',7), the agent’s expected payoff at time ¢ is,

Ut,p,7, T|R,R") :=E,, [(1 — e " Nwdu+e " [1, _sR® + 1, _pR"]]
Similarly, the principal’s expected payoff at time ¢ is,
11(t,p, 7, T|R®, R") ==K, [(1 — ") (=c) + ¢ [, s( — R¥) + L, _p(—R")]]

By dividing both players’ payoffs by w, we can set, without loss of generality,
w = 1.1 We make the following assumptions.

ASSUMPTION 1. We assume that R¥ >0 and R® > 1.

That is, any reward to the agent must be non-negative and in particular the amount
the principal pays to the agent upon obtaining an S signal, is no less than the dis-
counted value of the agent’s wage. We interpret success as the principal adopting the
project and employing the agent to work on it. The agent should thus continue to
receive at least the flow rents he receives during the experimentation stage.

ASSUMPTION 2. 2¢(C=D=c -

Ty

Assumption 2 says that if 6 = 1, the principal finds it worthwhile to employ the
agent to experiment by paying a reward of 1, the lowest possible reward upon an S
signal.

ASSUMPTION 3. ¢ > 1.

The above assumption makes it possible for the agent to look for failure when
RY =1 which, as we shall see, is the minimum reward the principal needs to give to
incentivize the agent to search for failure. If ¢ < 1, it means that the principal would
rather have the agent search for success forever over offering a reward of 1 for failure.

Suppose Py = p. Given (T, R, F') the agent solves the following problem:
U*(0,p, T, |R, R") :=sup U(0,p, T, 4|R", R") (AP)
y€G

v € G is a best response given (T, R, RF') for the agent if U(0,p, T,~, |R°, RF) =
U*(0,p, T|R%, RF).** Similarly, deadline T" is a best response for the principal given
(v, RS, RY) if,

T € argmaxy g, 11(0,p,T,7,|R%, R"). (PP)

13By doing so, the agent’s wage becomes 1, while his terminal payoff becomes S/w and F/w
depending on the signal. For the principal, the flow cost is ¢/w and the terminal payoffs are I'/w—S/w
and —F/w depending on the signal.

4By the dynamic programming principle, if a control is optimal at 0, then it is optimal at every
t>0.



Since the principal observes nothing other than a conclusive signal S or F which ends
the game, she merely chooses a deadline to end the game in the absence of a signal
assuming that the agent follows . That is, her problem is essentially a static problem.

Finally, we define the notion of (Nash) equilibrium in our setting.

DEFINITION 1. Suppose Py = p. Given a reward structure (R°, RY), an equilibrium
is a strategy profile (v,T) € G x R,y such that:

1. Agent optimality: v is a best response for the agent given (T, R®, RF')
2. Principal optimality: Deadline T is a best response for the principal given (v, RS, RF).

Define, E(R%, RY) :== {(v,T) : (v,T) constitutes an equilibrium given (R%, RF').},
and 11*(p| RS, RY) := SUD (4 7ce (RS, RF) 11(0, p, 4, T| R®, RF).

NOTATION 1. Henceforth, we will drop the dependence on RS, R and T for U(-) and
I1(-) as the dependence will be obvious in each section.

As mentioned in the introduction, the two main questions we seek to answer are
the following:

1. Should the principal ever set R > 07 After all, RY is a cost to the principal
whose only use is to save future experimentation costs.

2. If yes, what should RF be optimally?

Toward answering this question, we will first show, in Section 3.2, that the agent
will not look for failure in any equilibrium if R < 1. Therefore, the choice for the
principal is simple—either set R = 0 and make no use of the failure arm, or set
RF >1 and have the agent look for failure sometimes.

3. Results

3.1. When the agent only looks for success

Suppose R® =1, RF = 0. Let v! := T — R®. We pose a simple question—what should
the principal do if the agent was restricted to only looking for success, i.e. 3, = 1 for
all t? Let this agent strategy be denoted by ~!. For the principal, this is a simple
optimal stopping problem problem as in the planner’s problem (Theorem 1) of Keller

et al. (2005) (henceforth KRC).'?

15There is a slight difference in the payoff structure as our success arm produces only one lump-sum
payoff if # = 1 while in KRC the success (good news) arm produces multiple lump-sum payoffs if
0 = 1. The expressions, therefore, have to be appropriately adjusted for an exact mapping.
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Define, Vs : [0,1] — R as,

VS() = sup H(077’717T|(170))

TER+

This is a standard optimal stopping problem whose solution is simple—the principal
would continue employing the agent whenever the beliefs are above a belief pg and fire
below. pg is given below:

Ps = 1T (2)
PROPOSITION 1. The optimal stopping time for the principal is defined as T :=
inf{s > 0: P, ¢ (ps,1)}. Principal fires the agent iff t > 7.

When 7, = 1, the law of motion for beliefs, (1), yields P, = —\,P,(1 — P,)dt. Tt is
straightforward to verify that

wtn() ()]

is the amount of time it takes for P, = pg given Py = p > pg in the absence of an S
signal.

3.2. When R°=1,RF <1

In analyzing this case, the first obvious question is, what would happen if there
was no reward for failure (R = 0)? Lemma 1 characterizes the principal opti-
mal equilibrium—the equilibrium where the principal obtains her highest payoff given
(R%, RF) = (1,0). The equilibrium has an intuitive structure—the agent never searches
for failure and the principal fires agent when the belief P, reaches ps. The proof of
Lemma 1 is in the appendix but the underlying intuition is straightforward. Suppose
the principal gives a deadline 7' < oo. Notice that by searching for success for the
entire duration, the agent is guaranteed to receive the flow wage of $1 for the entire
duration of 7" if § = 0. Moreover, if # = 1, with some probability an S signal will
arrive yielding a value of 1 to the agent. On the other hand, if the agent allocates
some fraction of his time searching for failure, then an F signal may arrive if § = 0.
In this case, he will get terminated and would lose his subsequent wages. Moreover,
by searching for failure, he also lowers the probability of receiving a success if 6 = 1.
Therefore, the unique best response for any deadline is to keep searching for success
until the deadline. Proposition 1 delivers that a deadline of T(;(F) is optimal in this
case.

LemMMA 1. II*(-[1,0) = Vs(+).

The natural follow-up question is, can the principal do better—induce search for
failure—by offering a reward for failure? We answer this question in two steps. First,
we analyze an environment with RY € (0, 1).

11



A first, reasonably obvious, result in this regard is when T = oco. Lemma 2 shows
that in this case, the agent’s unique best response is to look for success, i.e. ¥'. The
intuition is exactly as in Lemma 1. By searching for failure, if an F signal arrives, the
agent forgoes some wages. On the other hand, by searching for success, the agent is
guaranteed a payoff of 1 (infinite horizon flow wage discounted appropriately). There-
fore, if the agent looks for a success only, the principal would best respond by having
a deadline of Ty, i.e. (v}, 00) cannot be an equilibrium regardless of the value of R
so long as RY < 1. We omit the proof of Lemma 2 in light of the similarity with the
proof of Lemma, 1.

LEMMA 2. When RY <1 < R®, there is no equilibrium with T = oo.

However, what would happen if T < co? Since R® > 1 > RF, searching for success
would still be more attractive if either signal was equally likely. But, when P, is
sufficiently low, this would not be the case. To see the intuition, let us for a moment
think in discrete time of length A =~ 0. Consider the “last period” before T, say,
t =T — A. Suppose there is no signal until then and the agent is deciding what type
of news to look for. What If \,(1 — P,) >> A\;P,7 In the next “instant”, an F signal is
far more likely than an S signal. Naturally, the agent would rather collect an expected
reward of \y(1 — P;)RFA than \,P,ARS.

Therefore, unlike in the case with RF = 0, even with small rewards, the principal
may be able to induce a search for failure. However, as Proposition 2 shows, the prin-
cipal cannot benefit from this. In any equilibrium with 7" < oo, the agent exclusively
searches for a success until getting fired.

PROPOSITION 2. Suppose RF <1 < RS. If a (v,T) equilibrium exists with T < oo,
it involves vy = 1 for allt < T'.

It would seem that Proposition 2 and the discussion before it—that the agent
would find looking for failure lucrative when T is finite and R € (0, 1)—contradict
each other. But that is not quite the case. Indeed, Lemma 3 confirms the intuition
that the agent will search for failure when RY € (0,1). But, it also shows that his best
response has a rather simple structure: Look exclusively for a success until some time
T} and then switch to looking exclusively for a failure.

LEMMA 3. Suppose v € G is a best response for (AP) with R € (0,1) and T < oo.
Then, 3T" < T such that v = Ly<q for a.e. t.

To see the intuition, consider an arbitrary agent strategy . Construct another
strategy +' such that the total allocation towards the success arm until 7" is the same
in v and v/, i.e T} := fOT Yedt = fOT v;dt. However, all of that allocation is frontloaded
in «" by setting 7; = l;<p,. That is, the agent exclusively searches for a success up
to T7. Notice that the ex-ante probability of receiving an S signal under ~ and v/
is identical but, in expectation, an S signal would arrive earlier in 7 compared to
~v. Equally importantly, the ex-ante probability of receiving an F signal before T is
the same in v and ' but this signal would arrive later, in expectation, under 7' as

12



compared to v because all the search for failure is backloaded as much as feasible.
Since R < 1, collecting a wage of 1 up front is always more desirable than collecting
RF. Therefore, 7' delivers a strictly higher value compared to . Results in optimal
control theory deliver that a best response exists to such a problem. Therefore, a best
response must have the structure that the agent searches for a success until some time
T and then switches to searching for failure.

But then, how would the principal best respond to such agent behavior? Notice
that retaining the agent after T offers no benefits. At best the principal can know
with certainty that the project is of low quality. In this case, besides incurring the
additional cost of experimentation, the principal will also have to pay the reward R
Moreover, regardless of the project quality, the principal cannot earn any positive
revenue after 7). Therefore, the principal must fire the agent at T;.

We emphasize though that this does not establish that (7, 7}) is an equilibrium as ~/
was a best response to a deadline T" and not T;. However, what Proposition 2 delivers
is that should an equilibrium exist, it cannot have the agent searching for failure until
getting fired. But then, if the on-path behavior by the agent is the same as v'-—the
agent strategy of always searching for success—then the best that the principal can
achieve is Vg(+) as discussed in Section 3.1.

Below, we summarize the discussion so far in a simple proposition—the highest
payoff the principal can attain when R¥ > 1, R < 1 is Vg(-).

PROPOSITION 3. Suppose R® > 1 and RF < 1. Then, II*(:|R% R) < Vs(-) =
I1*(+|1, 0).

3.3. When R° RF > 1.

Put together, the results until now imply that the only way the principal can possibly
induce the agent to search for failure is by offering a reward RY that is at least 1. No-
tice that both R and R are costs from the principal’s perspective. If she performed
experimentation herself, she would set both these rewards as low as possible. We will
make use of this obvious observation and compute the principal’s optimal experimen-
tation policy as a single agent decision problem with R® = RF = 1. Thereafter, we
will show that indeed this can be implemented as an equilibrium.

3.3.1. A Decision Maker Problem

A decision maker (DM) faces a project of unknown quality 6. The project can be either
bad (# = 0) or good(f = 1). At each instant, the DM has a unit resource. She allocates
a fraction a; towards experimentation and (1 — a;) to the safe arm that yields a flow
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payoff of 0.9 The flow cost of experimentation per unit resource allocated is c¢. Out of
the resources allocated towards experimentation, the DM allocates a fraction 7; to the
success arm which produces an S signal at an instantaneous arrival rate of A\;6a;y:. The
remaining (1 —) fraction of the allocated a; is invested towards the failure arm which
produces an F signal at an instantaneous arrival rate of A\,(1 — 6)a;(1 — ;). Either
signal, S or F, reveals the project quality. The DM receives a value v! upon an S signal
and a value of v upon an F signal. In the context of our problem, v! =T'—R® =T'—1
and v° = —RF" = —1.

Let P, := E,0 as before, and Y := [0,1]?. As before, a S(F) signal at time ¢
conclusively establishes that = 1 (0),i.e. P, =1 (0). In the absence of a signal, beliefs
evolve according to (1). Let, g(p) =pv' + (1 —p)v° and 7:=inf{t > 0: P, ¢ (0,1)}.

DEFINITION 2. A control o := (ai)i>0 = ((at,Vt))e>0 @5 a U valued process such that
a: Ry — U is measurable. The space of admissible controls is denoted by U.

Let,

J(p,a) =E, [ | etat-aarreore)

be the DM’s expected payoff by following a control a given that Fy = p.
The DM solves the problem below.

V(p) :=sup J(p, a) (DMP)

aceU

A control o* is called an optimal control if V(p) = J(p, o*). We will often call a control
as policy.

In order to present our main result—the characterization of the optimal policy—we
need to define four important policies. Notice that the policies below are Markov in
beliefs.!”

1. Freezing policy: We denote it by o/ = (1,7/). As the name suggests, here,
regardless of the belief the DM chooses 7; = 7/ until the uncertainty is resolved
by the arrival of an S or an F signal. In the appendix, we prove that the
VI() := J(-,af) is affine in p and is given by (6).

2. S only policy: We denote it by o®. Formally, o := (a;,7:) = (1,1) if P, > pg
and (0, ) otherwise. Recall that J(-,a”) = Vs(-).

3. FS policy: This is denoted by Oégls . First, a; = 1 for all ¢t and ~ is described as
follows:

16Notice that such a choice of allocating resources between experimentation and the outside option
was absent in the baseline model. Therefore, what the decision maker can achieve in this problem is
an upper bound to the principal’s payoff. We will then show that we can implement the same as an
equilibrium of the game.

I7A control/policy o € U is Markov in belief, in short Markov, if 3 a function g : [0,1] — U such
that oy = g(P;) for all ¢.
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e Look for F (v =0) if P, < py
e Look for S (1, =1) if P, > py.
e Freeze (v, = /) if P, = p1.

Call the above policy as af®. Let p := sup{p : J(p,a}") < 0}."% Notice that
conditional on reaching py, the beliefs stay there until the uncertainty is resolved.

Of particular importance amongst such policies is the “FS with a switch at p/”,
where p/ is given in (7). The intuition behind p/ is the following: Following a F'S
with a switch at p; policy, the DM receives the freezing value at p;. Therefore,
J(p1, k%) = VI(p1). p/ is the unique belief where we also have J'(py, ok %) =
VI (p1). Let Ves(:) = J(-, aff).

4. SFS policy: This is denoted by agfli. First, a; = 1p>ps. 7 is described as
follows:

e Look for S (v, =1) if P, € [0,p1) U (p2, 1].
e Freeze if P, = py, (7, = 7/).
NoTATION 2. We will sometimes refer to the components of a specific policy using

the relevant superscript and subscript. For example, the v part of affs will be referred
to as ’prfS

Figure 2 plots the three policies—S only, SFS and FS, below as functions of be-
liefs. The arrows indicate the direction in which the beliefs move when choosing the
associated action. “fr” stands for freezing.

Quit S
(1) S-only policy p——"Jt¢tt¢e<e<e<e<es<es<s
Quit fr S

(2) FS policy |— jtee

Quit S fr S
(3) SFS policy ~ p—t-ae feeee
Beliefs —p»
Figure 2: S, FS and SF'S policies

REMARK 1. Notice that a SES policy is either a S only policy or FS policy depending
on the initial belief Py.

Below, we present a complete characterization of the optimal control. Unsurpris-
ingly, there exists a Markov optimal policy. Therefore, we will describe an optimal

18 Expressions of J(p, ;) can be found in the appendix and are straightforward to compute, making
p well defined.
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policy as a function of the belief P,.

PROPOSITION 4. An optimal policy to (DMP) exists and is Markov in beliefs. The
optimal value function is given by,

V() = maX{Vs('), VFS(')}

Moreover, if V(p) = Vrs(p) = V(q) = Vrs(q) for all g > p.

For any optimal policy, a(p) = Lypso. An optimal policy v* : [0,1] — [0,1] can
belong to one of three cases.

1. 8 only policy: If Vs(p) > Vis(p’), then the optimal policy o*(-) = o

(fig-(3a)).

2. FS policy: If Vs(p’) < Vies(p’) and Vis(ps) > 0, then the optimal policy is
a*(v) = oz]l;ﬁ if Py > p and o*(-) = (0,-) otherwise. That is, we follow ozgfs if the
indtial prior is above p and quit otherwise (fig.(5b)).

3. SFS policy: If Vs(p') < Ves(p!) and Vrs(ps) < 0, then the optimal policy is
a*(-) = ap5 where py = {p : Vs(p) = Ves(p)}'* (fig.(3¢)).

Notice that all the all of the cases above are conditions on the primitives of the
model, and therefore, we have a complete characterization of the optimal policy.?"

Sketch of the proof: Typically, control problems like ours are solved by obtaining
a solution to the HJB equation below and invoking verification theorems thereafter.
One benefit this approach entails is that we do not need to prove the smoothness of
V (+) explicitly.

HJB equation:

V(p) = maxa{ = ¢+ (1 = p)(e° = V(D)) + Mp(1 = p)V'(p) + 7H(p, V(D). V() } =0

a”’y

where
H(p,V(p),V'(p)) :== Agplv" = V(p)] = (1 = p)[0° = V(p)] = [N + Aglp(1 — p)V'(p)

However, in our setting obtaining a candidate solution that satisfies the HJB equa-
tion globally, at least in the viscosity sense, is not straightforward. Therefore, we
reason through the properties of the optimal policy. Of course, in order to do so, we
invoke standard results from optimal control theory to establish the existence of an
optimal policy, (a*,~v*) (Proposition 10).

That such a p is unique follows from the fact that V(p) = Vrg(p) > Vs(p) = V(q) =

VFS(q)v Vq > p-
20There exist parameters for which each of the above may occur. For example, set I' = 11, ), =

1,c¢ = 3. Then, with A\, = 1, we have the G only policy as optimal, with A\, = 10, we have SFS policy
as optimal. And for A\, = 25 we have FS as the optimal policy.
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(c) BG policy

Figure 3: Three possible optimal policies

The proof has three main parts. First, replicating the arguments in Strulovici and
Szydlowski (2012) we obtain that V'(+) is convex, and hence differentiable a.e. Typical
dynamic programming arguments yield that V() satisfies the HJB equation at points
of differentiability (Proposition 9). Linearity in a implies the obvious—it is optimal to
set a* = 1 when V() > 0. Moreover, linearity in v tells us that, wlog, v* € {0,1} a.e.
whenever H(-) # 0. Therefore, 7; € {0,1} whenever V(P,) is differentiable (Lemma
11).2! Lastly, if H(p) = 0 for some p, it is without loss to set v = 4/ which yields that
V(p) =V/(p).

Second, we show that aﬁ}s delivers a strictly a higher value than freezing at all points
except p/ (Lemma 8). Therefore, if the optimal control involves freezing anywhere it
can only be at p/. Moreover, we show that, if the optimal policy entails freezing beliefs
at some p for any interval of time [t;, t5], it must mean that V(p) = V/(p) = p = p’.

21This argument even extends to the points where V(-) is not differentiable. Due to convexity, V(+)
has one-sided derivatives everywhere and, therefore, appropriate one sided versions of HJB are used,
see Lemma 11).
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Lastly, results from stochastic optimal control theory yield that it is, in fact, without
loss of generality, to restrict attention to Markov controls (Kurtz and Stockbridge
(1998), Lemma 13 ). Therefore, we obtain Lemma 14—when following v* beliefs
move (weakly) only in one direction absent conclusive news. That is, if Py = p and
P, = q > p for some t > 0, then they never come back to p. Therefore, only one of the
following three possibilities remain: Beliefs keep moving down (o), beliefs move up
and freeze at p/, or beliefs move down and freeze at p/.?> The latter two combine to
give the policy agfs where the behavior differs only depending on whether F, is below
p/ or above. As a result, the optimal value function is merely a comparison between
the values by these two policies delivering Proposition 4.

3.4. Optimal Reward Structure

In Proposition 4 we obtained the optimal experimentation policy, a* for the principal
with R® = RF = 1 ignoring the agent incentives. Here, we will show that there is a
rather simple way to implement the same. To this end, we present our main result
below. In words, Proposition 5 says that there exists an equilibrium that delivers to
the principal a value of V(+) obtained in Proposition 4 when R® = R¥ = 1. Notice that
the optimal value the DM can achieve in (DMP) is decreasing in (R, RF"). Therefore,
for any (R%, R) > (1,1), II*(:| RS, RF) < V().

PROPOSITION 5. Let Py =p. Then, 3 R € {0,1} such that, II*(p|1, RE) = V(p).*?

Proof. As seen in Proposition 4, the optimal policy a* to (DMP) is one of the following:

(1) a S only policy a”, (2) a FS policy Oéffs or (3) a SFS policy O‘ifpsf" or

If o* = o®, then set R = 0, As seen in Section 3.2, with no rewards for failure,
the agent only searches for success . Therefore, IT*(:|1,0) = Vg(-) = V(+).

Suppose a* = ozle ff. Then we have two cases depending on whether Py > py, i.e.
V(p) = Vps(p) or Py < p1, i.e. V(p) = Vs(p), where Py is the initial prior (Refer to
Fig. (3c)).

If Py > pi1, the DM searches for failure until the beliefs reach p/. At p/, the DM
freezes beliefs until a conclusive signal arrives. By setting R = 1 and T = oo, the
agent is indifferent across any ~;. Therefore, in particular, the agent can choose 75}5 ,
yielding I1(0, p, yﬁs,oo|(1, 1)) = Vrs(p) = V(p). On the other hand, if By < p;, then
choosing RI" = 0 delivers I1*(p|1,0) = Vs(p) = V(p) as in the previous case.

Lastly, if a* = ozgfs, then, as in the previous case, setting R = 1,7 = oo, we can
obtain II(0, p, 7]135,oo|(1,1)) = Vrs(p) = V(p). Since, IT*(p|1,1) < V(p), we obtain
the desired equality I1*(p|1,1) = V(p)

22Technically, there is also the possibility of beliefs always moving up. However, that would mean
the DM only looks for B which is obviously suboptimal.
23 As will be clear in the proof, R can depend on the initial prior p.
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REMARK 2. Notice that in the SFS case, RY depends on P.

Finally, as consequence, we obtain our main result—either the principal should
reward success or failure equally, or do not reward failure at all. Even though the
result is a corollary of Proposition 5 and Proposition 3, we state it as a Proposition.

PROPOSITION 6. I1*(|R%, RY") < max{II*(-|1,0), I1*(:|1,1)} for any (R®, RY) € [1,00)x
R,.

4. Some observations

4.1. Scale of innovation and rewarding for failure

As mentioned in the introduction, a key feature of the ideas that make the cut in
Google X, according to Teller, is that they have a truly transformative potential, e.g.
self-driving cars. In Teller’s philosophy, the scale of profits is a lot higher in such ideas
compared to incremental innovations that largely rely on a strong sales team to earn
revenue. In our model, this is captured by I'—the value of an S signal that establishes
that 6 = 1. And indeed, for a range of non knife-edge parameters, we can confirm
Teller’s insight—when T is sufficiently high it may be optimal to reward failures, and
not do so if I' is low. We summarize this in Proposition 7.

PROPOSITION 7. 3 M\, g, c and I'y < I'y such that, o = a® when T' = Ty and
oF = agfs when I' = T'y.

To see the intuition, first notice that V/(1) < 0 = V/(p/) < 0. Therefore, the
optimal policy in this case must be a®. Moreover, as (6) shows when v! = I'; — 1
is sufficiently small, it is possible to satisfy Assumption 2 and yet have V/(1) < 0.2
More importantly, this is true regardless of how high A, is. Noticing this, we take both
My and I' to infinity and notice that, when both A\, and I" are sufficiently high, we have
that J(pg,agfs) > 0.%

4.2. When to reward failure?

FS
pf
we

At this point, we know that if the optimal policy («*) in Proposition 4 is either «

SFS FS

or ap", we may end up rewarding the agent for failure. In fact, if o* = o

24The precision condition is Agv! € (¢, (1 + Ag/Ap)c).

25We would like to emphasize that both pg and pf change with I', and p/ changes with )\, as well.
Therefore, we first choose a I' large enough so as to be able to generate Vpg(ps, agfs) > 0. Then, we
take A\, — oo to achieve this.
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will necessarily do s0.?° However, we would like to draw attention to the case when
af = aif Iif. Here we will reward the agent for failure iff Py > p;, and not otherwise.
That is, perhaps counterintuitively, the principal will reward the agent for failure if
the initial prior is sufficiently high but not otherwise. The reasoning, in the context
of our model, is not very hard to see—when the initial prior is low, the expected size
of the pie (FpI) is itself small. Therefore, promising a reward for failure may not
be worthwhile. Practically, this suggests that we should be witnessing failures being

rewarded more often for projects that were ex-ante more likely to succeed.

4.3. Relation between )\, and rewarding for failure

An obvious comparative static one would guess is that if )\, is very low, we should not
see failure being rewarded. Similarly, if A\, is very high we should see it being rewarded.
We confirm the intuition below in Proposition 8.

PROPOSITION 8. Suppose 1° + —5— > 0. Then, IN} < A} such that a*(\}) = o and

[ESW
a*(\) = agfs.

First, if \, ~ 0 it is obvious that a*(\;) = o in Proposition 4 regardless of the
value of I'. Therefore, choosing I' = I'y as in Proposition 7, we can can vary A, from
Ap = 0 to a sufficiently high value so that a*(\,) = affs to deliver the proposition.
Therefore, we skip the proof.

As mentioned in the introduction the “bug bounty programs” are becoming in-
creasingly popular. One reason could be that finding bugs or flaws in a code is easier,
captured through higher \,, compared to finding similar flaws in, say, a manufacturing
unit.

4.4. Searching for failure vs reporting failure

As mentioned before, much of the literature on rewarding failure has focused on incen-
tivizing the agent to report failures. Suppose we enrich our model so that success is
public but failure is not. So, the agent can hide a failure and continue receiving wages
for longer. However, notice that the agent searches for failure only when RY = 1.
Therefore, even if he could conceal failure and receive wages longer, it does not help
him attain a strictly higher payoff. Therefore, he has no incentive to withhold failures.

It is important to point out, however, that this insight relies on there being moral
hazard only on the intensive margin—allocation choice between looking for success
and failure—and not on the extensive margin. If the effort was costly and the agent
could search, then the agent may wish to conceal a failure and collect wages longer
while shirking and saving effort costs.

26This is of course assuming Py > p. To keep the discussion simple, we assume that to be the case.
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5. Conclusion

In this paper, we studied a simple model of a principal-agent relationship with experi-
mentation and limits to contractibility. The main focus of the paper was to determine
whether and when the principal should reward the agent for reporting failure, and how
the optimal reward scheme should be structured. Our main takeaway is that either
the principal should offer no reward to the agent for failure, or she should offer the
same reward for success or failure. Given that rewarding failure is costly, the sole rea-
son for offering such a reward is to incentivize the agent to search for failure, thereby
potentially saving future experimentation costs. Prior to this paper, most research
that prescribed rewarding failure has focused on providing incentives to the agent to
disclose failures. In contrast, we show that even when such concerns are absent, i.e.
the signal is public, a fundamental source of conflict arises due to the agent’s aversion
to searching for failure because its arrival triggers his termination.

A key feature of our model—viewing experimentation as acquiring information from
multiple sources—brings out novel dynamics. Our model predicts that rewarding for
failure may be more common in experimentation environments where the informative-
ness of the failure arm is high. Our results may also provide an alternative explanation
to why failures are not transmitted efficiently to management in organizations—it is
not that the employees hide negative information, but rather that they choose not to
acquire it when there is no reward for finding negative information. As mentioned be-
fore, this insight could, potentially, break down if we enriched the model to add moral
hazard on the extensive margin which seems like a natural point of inquiry ahead.
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A. Appendix

A.1. When F <1 (Section 3.2).

Proof of Lemma 1. Suppose T' = 00, i.e. P never fires A in the absence of a conclusive
signal. Notice that U(t,p,T") < 1. Choosing v, = 1 for all ¢ delivers U(t,p,T) = 1.
Moreover, any strategy involving v, # 1 for a.e. t results in a positive probability of
an F signal, and therefore termination. Hence, v, = 1 for a.e. t is the unique best
response to T = oo. If 74 = 1 for all ¢, by Proposition 1, it is optimal for the principal
to fire the agent at Tg(P,).?" Therefore, T' = oo cannot be a best response for the
principal.

Suppose T' < oo. Let 74 = 1 V¢, be a constant control where the agent searches for
success at all times. Define,

T
a:=1—exp (—/ )\g%dt)
0
T
p:=1—exp (—/ (1 — ”yt)dt> .
0

« is the probability of receiving S before 7' conditional on § = 1, given . Similarly
is the probability of receiving F before T conditional on # = 0. Notice that § >0 =
(1 —p)B8 > 0. Therefore, with positive probability, an F signal will arrive before T
that would result in the agent’s termination. Let z(3) be the agent’s ex-ante expected
value conditional on an F signal arriving before T. Obviously, z < (1 — e™T) since
RF = 0. Moreover, x(3) is decreasing in 3. Therefore,

S(0,p,7", T) =plal + (1 - a)(1 —e ") + (1 = p)[fr+ (1 = B)(1 —e )]
=pae” T+ (1—e M) (1=p)+ (1 -p)Bz—(1-eT))

First, RHS is increasing in a. Second, since (x—(1—e™1)) < 0, increasing 8 = B(z—
(1 —eT)) decreases. Therefore, U(-) is decreasing in 3. Therefore, the unique best
response for any 7' < oo is to set 7, = 1 for a.e. t < T. Therefore, II*(:|1,0) < Vs(-).
Equality obtains if the principal sets T' = T(p), the time it takes for the beliefs to
drift from Py = p to ps in the absence of an S signal (refer to Proposition 1).

]

Towards the proof of Proposition 2, we first observe that an optimal control exists
in the (AP) with T < oo, RS = 1, R < 1. This follows from Corollary 1.4 Chapter
VI from Bardi and Capuzzo-Dolcetta (2008). See Proposition 10 for details.

LEMMA 4. There exists a best response to (T, R®, RF'). (Refer to (AP).)

2"To apply the result, set v! =T — R =T —1.
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Proof of Lemma 3. Suppose not. Let T} := fOT ~v:dt Consider an alternative control
7' := ly<7,. Notice that, for any ¢, fot vids > f(f vsds. Moreover, since 7, = 0 whenever
t>1,

/OT<1—7;)ds:T_T1:/OT(1—%)ds — /Ot(1—7;)dsg/0t<1—%)ds vt € [0, 7).

Also, the inequality is strict at least for some ¢ by assumption.

For any control n € G, define, 7 := inf{t > 0 : P/’ = 0} AT. Notice that 7} is

exponential distributed with F, (¢) := P(7} < |0 =0) = = pr()\ ffoki(ln 7;1)(1)5 as its CDF
ex bJo s

for any ¢ < T'. Since, [5(1—~.)ds < fg( —y.)ds, Fy(t) > Fy(t) forall t < T, ie. 7
first order stochastically dominates 75.

Lastly, notice that the probability of receiving an S signal using either «y or +' before
T is x := p(1 — e *T1). Therefore,

U(0,p,7,T) =ple + (1= 2)(1 = e )] + (1= p)E, |(1 = e 3(1 = F))|0 = 0)

<ple+ (L= a) (1 —e )]+ (1= p)Ey (1= e (1= F))J0 = 0]
=U(0,p,7,T)

where the strictly inequality is due to the fact that F,(-) # F,(-) and (1—e *(1— RF))
is a strictly increasing function. Therefore, + delivers a strictly higher value than =,
contradicting the optimality of ~. O]

Proof of Proposition 2. Consider any equilibrium (v,7) with the reward structure
(R%, RY) with R® = 1, RF < 1, such that T < oco. By Lemma 3, 3 Ty < T such
that v, = 1,<p, for a.e. ¢. Suppose 77 < T'. Then, principal can fire the agent at 7}
(conditional on signal). Since the agent only searches for a failure after 77, the princi-
pal incurs the flow cost ¢ of experimentation as well as a potential reward RY for an
F signal. By firing the agent at T}, the principal can guarantee herself a continuation
payoff of 0 at T} which is strictly larger in expectation compared to the continuation
payoft at 77 when following . Therefore, in equilibrium, 7} = T. O]

B. Proof of Proposition 4

We analyze (DMP) in this section to obtain the optimal control/policy.

CrAam 1. V(-) is convexr.

Proof. Let h(a,0) :==Eqp [ [y e ai(—c)dt + e "g(y-)]. Then, J(p,a) = ph(a, 1)+ (1—
p)h(a,0). Therefore, J(p,a) is affine in p. Since the supremum of affine functions is
convex, V(p) is convex in p. O
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Fact 1. A convez function f :[0,1] — R is continuous on (0,1), and is differentiable

almost everywhere. Moreover, one-sided derivatives Vi (p) and V' (p) exist for all p €
(0,1).

Let

D :={p € (0,1): V(-) is differentiable at p}
DY :=(0,1)\D

Cramm 2. V(-) is continuous at 0.

Proof. Notice that —c < J(-,«) < v! for all a. Therefore, % < M for some M.
Moreover, V(p) > 0 is obvious as a = (0,-) yields J(,-,«) = 0. Suppose V(0+)
2¢ > 0. Therefore, Ja,, p,, such that p, | 0 and J(p,, o) > €. Therefore, 9J(pn.0n)

Op
- — 00 as n — oo. A contradiction. Therefore, V' (0+) = V(0) = 0.

(AVANI

U

Cramv 3. Jp € [0,1] such that V(p) =0 iff p < p.

Proof. Define p := sup{p : V(q) = 0¥q € [0, p|}. By definition, V{(p) > 0. Consider

any ¢ > p such that V(q) > 0. By convexity, V{(q) > V(q)/(¢ —p) > 0. Therefore,
V(p) > 0 for all p > p. Therefore, for any p > ¢, V(p) > V(q) + Vi(¢)(p—¢q) > 0. O

HJB Equation
Define,

H(p,V(p),V'(p)) :== Agplv" = V(p)] = (1 = p)[0° = V(p)] = [N + Agp(1 — p)V'(p)
(4)

The HJB equation for our problem is the following:

V(p) — max a{ —c+ M(1=p)(”" = V(p)) + Np(1 = p)V'(p) + vH (p, V(p), V’(p))} =0
(5)

Let,

W(p,V(p),V'(p)) := sup { —c+ N(1=p)(©° = V(p)) + Nop(1 = p)V'(p) +vH (p, V (p), V’(p))}

~

PROPOSITION 9. [fp € D then V(p) satisfies (5).

Proof. We will first show that if V'(-) is differentiable at p, then

V(p) — max a{ —c4+ (1 =p) (0" = V(p) + Xp(1 = p)V'(p) + vH (p, V (p), V’(p))} >0

a?’y
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Consider a constant control a@ = (a,7y). By the Dynamic Programming Principle, for
a small dt > 0,

V(p) Za{(—c)dt + Agypvtdt + Ay(1 — ) (1 — p)o°dt
(1= dt)(1 = Agypdt = My(1 = 7)(1 = p)dt) [V (p) + (a1 = 7) = A7)p(1 = p)V'(p)dt| }
Rearranging the equation and dividing by d¢, we obtain,

V(p) Za{ = ¢+ N1 = p)(e° = V(p) + Ap(1 = p)V'(0)  +7H(p,V (D), V'(p))}

Since (a,~) are arbitrary, we obtain

V(p) — max a{ —c+ X(1=p) (0" = V(p) + Aep(1 — p)V'(p) + vH(p, V (p), V’(p))} >0

a?’y

For the reverse inequality, for any ¢ > 0, Ja such that J(p,a) > V(p) — €. Let
A := \/e. For a small ¢, define 7" := A A 7. By the Dynamic programming principle,

/

Vip) —e< J(p,a)<E / (—c)aetdt + e 7V (Py)
0

A
< / (—c)aze™tdt +p(1 — e~ Iy Agasrsds)pl (1 — p)(1 — e I Apas(1=7)ds)y,0
0
+ (1= A)(pe” J5" dgassds 4 (1—p)e” I Avas(1=7)d5)17( P |No news until A)
Therefore, using first order approxmiations, we have,

V(p) — € <(—c)al + pAFaAv' + (1 — p)A(1 — a)(1 — 7)o°
(1= 8) (1= pAaFA = (1= p)ha(l = 9A) [V(p) = a1 = §) = A5V (p)]

where a := fOA asds,y := %fOA asYsds.

Rearranging the above,

V(p) = a{ = e+ M1 =p)(° = V(D) + Ap(1 = p)V'(0) + FH (P, VD), V(D) } < 5 = Ve
= V(p) — max a{ —c+ M1 =p)(V(p) +°) + Xp(1 = p)V'(p) +vH (p,V(p), V’(p))} < Ve

Since € is arbitrary, we obtain the desired inequality below.
Vip) — maxa{ — e (1= p)(o = V) + Ap(1 = p)V'(p) + YH(p,V(p). V'(p)) } <O
O

PROPOSITION 10. An optimal control exists, i.e. Ja* = (a},7;)>0 € A such that
J(p,a™) = V(p).
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Proof. We can view the control problem at hand as a deterministic control problem.
To this end, define

t
t t
A= / ase” °ds, Gy = e 9 Jo “S%ds, B, = Jo as(1=7s)ds
0

Then, we have,

J(p,a) = / PAga Gy [Ule—t _ cAt] dt —|—/ (1 —p)Xpar(1 — ) By [er—t _ cAt] dt
0 0
V(p) = sup J(p, @)

aceU

Corollary 1.4, Chapter VI from Bardi and Capuzzo-Dolcetta (2008) establishes that
an optimal control exists for the above problem. To formally apply the Corollary, we
need to define a new state variable z := (¢,p, A,G, B). Then, & = f(x,u), where
u = (a,v) € Y. We can define

1
a[Ap(1 =) = Agv]p(1 = p)
fz,u) = ae”’
—AgaG
—)\ba(l — ")/)B
Lastly, I(z,Y) i= {pAgarGe[v'e™ — cA + (1 = p)var(1 —3) Bi[ve ™ —cAi] t u € Y}
It is obvious that f(x,)) x I(x,)) is convex, and hence the corollary applies. O]

Define V/(p) := J(p,af) where of = (1,~/) for all ¢.
LEMMA 5. At any p > p such that p € D, at least one of the following holds:
1. V(p) = sup, s aW(p,V(p), Vi(p)) = 0.

2. V(p) = sup, 45qs aW (p,V(p), V.(p)) = 0.
3. V(p) =V/(p).

Proof. First of all, by standard dynamic programming argument using a constant
control (as in Proposition 9), we have,

V(p) — sup aW(p,V(p),Vi(p)) >0

ay<~yf

V(p) — sup aW(p,V(p),V.(p)) >0

ay<y?

For the optimal control a*, assume wlog that aj =0 = ~; = 0. For any time ¢,

t
I ~ . Joainids
deﬁne, Qi = n fO CLSdS,”}/t = Ta

Suppose 3 a sequence (h,) | 0 such that, in the absence of G or B, P, := P,?: > p.
Let 4, := An, and @, := a,,. From (1), P, > p = 7; < +/.2® Therefore, using first

28Beliefs will move up iff v, < 7/ and a; > 0.
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order approxmiations, we have,
V(p) :dn[ = chn + M(1 = p)(1 = ) (0" = V(p) i + Aop(1 = p)VL(p) -
V(AP = V(p)ha = M(1 = p)(e° = V(p) = (A + Ap(1 = D)Vi ()]
+ (1 =)V (p)

Taking n — oo, possibly passing on to a subsequence where (a,,%,) — (a, 7).

V(p) —aW(p,V(p),Vi(p)) =0 = V(p)— sup aW(p,V(p),Vi(p)) =0

ay<vyf

For (2), suppose 3 a sequence (hy,,) | 0 such that, in the absence of G or B, P, :=
P;L": < p. Rest of the argument is identical as above to obtain

V(p) — sup W(p,V(p),V'(p)) =0

a,y>~f

However, if 3 a sequence as in (1) and (2) = P, = p for all s € [0,¢] for some
s. Therefore, either a* = 0 for all s € [0,T] or v = «/ for a.e. s such that a* > 0.
If aj = 0 for a.e. s, then V(p) = 0, a contradiction as p > p. Therefore, 7} = v/ for
fo% ;zﬁds .

n

a.e. s. It is straightforward to check, then, V(p) = aV/(p) where @ = lim,,
Since V(p) > V/(p), we have, V(p) = V/(p).

[]

Below, from Definition 3 up to the end of Lemma 8, we provide a control that
delivers a strictly higher value than V7/(-) at all but one p, to be called p/.

DEFINITION 3. The following control control Oégls = (a,7) is called a “FS policy with
a switch at pr”

1. ay =1 forallt.

2.
1 of P> py
w=9.7 ifP=m
0 if P < py
CLAM 4.

)\b)\ /\b)\ [Ul — UO]
v N 9 0 g . 6
®) ( R RS TEr W AR >) T T (6)

Proof. Using «, the beliefs remain at p until conclusive news arrives. Therefore,

V(p) = — edt + Agpy/vtdt + N\p(1 — p) (1 — 4F)dt+
+ (1= dt)(1 = pAyy?dt — (1 = p)X(1 = 7")dt)V (p)
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Rearranging the above using the fact that A\,(1 — /) = A7/, we obtain the above

expression. O
LEMMA 6.
1
v04-c p .
Ab(l,\fzr(l+ +CP[ }Ab—c if p < p1,
Ao Ag .
J(p, a,is) = —Ab/\ngng (c+pt =0+ —c  if p=p,
1
911)5:1/\“) +Ci1(1—p) [%} R if p>p

where Cy and Cy are determined using continuity of J(-, ;! ESY at p,.

Proof. The proof is straightforward given that following a , for any belief p < py,
there is exclusive search for failure until beliefs hit p;.

In the absence of a signal, we have,

Zt—Ab > Zt ZO+)\bt

where Z, := log [ £ ). Let Z' = log ( -2~ ), we can define t,(p) := (Z' — Zy) /M.
1-P, 1—p1

This is the time it takes for the beliefs to reach p; starting at Fy < p; in the absence
of a signal. Therefore, letting Py = p < py,

folp) = J(p, alS) = / (1= poe e 0 — (1 — e t)edt
e (1= e™)(=0) + eV (p)]

Since t;(+) is differentiable, so is fo(-). Therefore, it satisfies the differential equation
below.

fop) = —c+ M1 = p)[° = fo(p)] + Xep(L = p) f5(p)

 M-p0+o) p 1%

C, is obtained by using the fact that the DM switches to 7/, i.e. freezing at p;. The
value by freezing is V7/(p,).

An analogous argument gives yields fi(p) := J(p, af a, 5) when p > p,. For the sake
of completeness, we provide the differential equation that f;(p) satisfies:

filp) = —c+ Aplv" = fo(p)] = Agp(1 = p) fi(p)

Lastly, J(p1, al®) = VI (p1).

CramM 5. 3lpy such that J' (p1,aff) = VI (py).
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Proof. For left differentiability, we need, fg(p1) = V7/(p1) and fi(p) = V¥ (p1).
Notice that V/(-) is affine. Let K := V' (p) = %(vl—vo). Let V/(p) = B+Kp
From (6), we get that A A

._ /\b)‘g 0
b= ( AW v Wt ))‘

Therefore, we need,

B+ Kpr=—c+ X1 —p)” = (b+ Kp)] + pr(1 — p1) K
—c— B+ X" = B)
K + )\b(vo — ﬂ)

jplz

Substituting the values for g and K, we get,

Ap(c+ )
Ag(vt 4 ¢) + X (V0 + )

p1 =

CLAIM 6. 3!py such that er(pQ,agf) = Vf/(pz)-

Proof. The proof is identical to the previous Claim. Repeating the steps above, we
obtain,

s
b2 K =)\t =B —c¢)
(e + v°)
Ag(vl 4+ ¢) + Ap(v° + ¢)

:>p2:
O

Since p; and ps obtained in Claim 5 and 6 coincide, we obtain the following lemma.

LEMMA 7. 3'pf such that J(p, oz;;fs) is differentiable at p’ with J’(pf,ozﬁfs) =V (p).
Also, p’ is the following:
Ap(v0 + ¢)

P’ ::)\g(vl +¢)+ X0+ ¢)’ (7)

LEMMA 8. Ifc> R andp #p/ = V(p) > V(p).

Proof.
1

)\b(lz\p)(UOJFC) + Cop [L] . if p < pf

p+1 I-p ’
Ap) .

J(p, Oé,f}s) =: Vps(p) = m(c +plot =% + ?0) —c ifp=yp/, (8)

Agp(vi4c | g .

g]loi)\:‘)_f_cl(l—p) [% I _¢ 1fp>pf
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where p/ is given in (7) and the constants Cy and C) given below are calculated by
using continuity at p/.

. )\g(vl + C) b )\b /\g)\b 1

Co = |:/\b(UO+C) L+ [+ A+ N, (v +o0),
ReCET I A hy .

G = L\g(vl%—c) v v wnswl ROl

Also,
N ()
b 14 .
Cop [%] b—_bp if p < p/,

1
Chp [1_”] v —)\g(1+)\g_) if p > pl.

Note that Vpg(+) is strictly convex if Cy > 0 and C; > 0, that is if v! 4+ c and 0" +¢
are both strictly positive. Since ¢ > RY, these conditions hold and hence Vipg(-) is
strictly convex. By construction, Vieg(pf) = V/(p/) and Vis(p?) = VI (pf). Therefore
Vrs(p) > V/(p) when p # p/. Therefore the optimal value function V(p) > V/(p)
when p # p/. n

Notice that ¢ > 1 by Assumption 3. Therefore, ¢ > R = 1 is always satisfied.
LEMMA 9. P, >p = a; =L

Proof. It P, € D, V(P,) satisfies (5). It W(P,,V(P,),V'(F;)) < 0, then V(p) = 0, a
contradiction. Therefore, W (P, V(F),V'(P)) >0 = a; = 1.

If P, € DY then V (p) satisfies one of the 3 cases in Lemma 5. Suppose (1), i.e.

V(p) — sup aW(p,V(p),Vi(p)) =0

ay<vyf

Obviously, if W (p, V(p), V{(p)) <0, then V(p) = 0, a contradiction as p > p. There-
fore, W(p, V(p),V.(p)) > 0 and a*(p) = 1. Similar argument holds for (2). If (3),
then a constant control a = (1,~7) yields J(p,a) = V/(p) = V(p). O

As consequence of Lemma 9, the HJB equation when p > p reduces to the following:
V(p) - { —c+M(1=p) (0" = V(p)) + Aep(1 = p)V'(p) + max vH (p,V(p), V’(p))} =0
(9)

The cases in Lemma 5 will no longer feature dependence on a.

Define,

F(x,y,z,T):=y— { —c+ (1 —2) (0" —gy) + Na(1 —x)z+sup7H(x,y,z)}

vyel
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LEMMA 10. Suppose p € D and V (p) > VI (p). The following holds:
1. F(p,V(p),Vi(p),[0,47)) =0 = H(p,V(p),Vi(p)) <0.
2. F(p,V(p),Vi(p), (4. 1]) =0 = H(p,V(p),V.(p)) > 0.
Proof. Consider (1). Suppose H(p, V(p), V{(p)) = 0. Then, sup,cj,s vH(p, V(p), Vi(p)) =

v H(p,V(p),V.(p)). Therefore, V(p) = V/(p), a contradiction. Same holds for
(2). O

LEMMA 11. P, >p = wlog~; € {0,47,1}.

Proof. When P, € D, V(F;) satisfies (9). Therefore, we have,
1 it H( P,V (FP),V'(F)) >0
v =141[0,1 if H(P,V(P),V'(P))=0
0 it H(P,V(F,),V'(P)) <0
In particular, when H (P, V(P,),V'(P)) = 0, we can set v; = /.

On the other hand, if P, € D¢ and V(P;) > V/(F,), then at least one of the two
holds from Lemma 10

1. F(P,V(PR),Vi(F),[0,47)) =0 and H(P, V(F,),VL(P)) < 0.
2. F(P,V(P),V'(P),(v/,1]) =0 and H(P,,V(P),V'(P,)) > 0.

Since an optimal control exists, if (1) holds, 7; = 0, and if (1) fails but (2) holds,
v = 1. Lastly, if V(P) = V/(P,), then 77 =/ delivers the requisite value.

O
As a consequence of Lemma 8, Lemma 10 and 11, we obtain the following corollary.
COROLLARY 1. P, >p and P, # p! = ~; € {0,1}.
REMARK 3. Notice that P, > 0 if v =0 and P, <0 if v =1

LEMMA 12. If P, = p for all s € [0,t] for some t > 0 then v =~/ for a.e. s €0,t].

Proof. Suppose v € {0,1} for a.e. s € [0,t].? Define, A := {t:~; =0}. For P, =p
for all s <'t, we require, for any 0 < t; <t, <t,

to to
/ ]lAdtz/ (1= 1a)dt
t1 t1

In other words, we need {(ANT) = {(I\A) = ((ANI) = 3((I) for all intervals
I = [t1,t5).%" Therefore,

. U(AN[s—¢es+¢ 1

lim =—.

e—0 2¢ 2

29We can simply ignore the times when v* = 4/ and consider a smaller interval.
30¢(A) is the Lebesgue measure of set A.
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On the other hand, by the Lebesgue density theorem, for a.e. x € S,
(AN (x—€,x+€))

lim =1
e—0 2e
A contradiction. Therefore, no such A exists, i.e. v =~/ for a.e. s € [0,1]. O

CLAIM 7. Suppose Py =p. If v* =~/ for a.e. s €(0,t] then V(p) = V/(p).

Proof. Since the beliefs do not move between [0,¢], by Lemma 12, v, = +/ for a.e.
t € [0,T]. Therefore,

V(p) =X potdt — cdt + \y(1 — p)(1 — 4 )o'dt
+ (1 —dt)(1 = Ay pdt — (1 — 45 (1 — p)dt)V (p)
= V(p) =V'(p)

since A,y — Mp(1 —~7) =0. O
COROLLARY 2. V(p) = V/(p) = ~; =/ wlog for a.e. t and p=p’.

DEFINITION 4. A control « is called a Markov control if there exists a measurable
function g : [0,1] — Y such that o, = g(P,) for all t > 0. Let the space of Markovian
controls be denoted by M.

LEMMA 13. Given an o € U, o/ € M such that J(-, ) = J(-, ).

Proof. The stochastic control problem in (DMP) is the same as the first-passage prob-
lem in Kurtz and Stockbridge (1998). Theorem 5.5 in Kurtz and Stockbridge (1998)
proves that for any admissible control «, there exists a Markovian control o/ such that
J(-,a) = J(-,&’). The paper formulates the stochastic control problem as a controlled
martingale problem where the martingale is often defined through the infinitesimal
generator.

To see the exact mapping, use E = [0, 1], A = 0. For any f € C'([0, 1]) and a control
« € U, the infinitesimal generator for P, is amap A : D(A) := C([0,1]) — C([0,1] x Y)
as below.

Af(p) = lim ZLED = ()

t10 t
=a | Agyplf(1) = f(p)] + M(1 = 7)(1 = p)[f(0) — f(p)]
+ [Mo(1 =) = AgIp(1 = p) f'(p)

Notice that |Af(x,u)| < (A+Ag) (|| f1|+]]f]]). Hence conditions (i)-(vi) apply enabling
us to invoke Theorem 5.5. [

REMARK 4. To be precise, Theorem 5.5 in Kurtz and Stockbridge (1998) gives a payoff
equivalent “relaxed” Markovian control, i.e. « : [0,1] — A(Y). However, given the
linearity in the law of motion and the arrival rates of news, such mixing can be done
away with at no additional cost.
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Therefore, it is without loss to restrict attention to Markovian controls. Moreover,
due to Lemma 11, we can restrict attention to {0,~/, 1}-valued Markovian controls for
v*. We will use 7; and v*(p) interchangeably at the risk of abusing notation.

LEMMA 14. Beliefs move only in one direction: Suppose Py =p and Ps =q <p
for some s. Then, P, & [p,q) for any u > s. Similarly, if P; = q > p then P, & (q,p)
for any u > s.

Proof. Notice that ~; is uniquely pinned down by P, by Lemma 13. Suppose, Ps; =
g <pand P, =1 € (q,p) for some u > s. Let, wlog, s = inf{t > 0: P/ = ¢q}. Since
min{\y, Ay} < |P,| < max{\,\,}, s > ¢ for some ¢ > 0. Choose a § small enough
such that P;_, = q+¢ for some > 0 and P/ <7 for all t € [s — 7, s]. Such a § exists
because P is bounded. If P? = r for some u > s = P}, = P! = q+ ¢ for some
m = {inft >0: P}, = ¢+ d}. Obviously, n; > 0. However, by the Markov property,
PP, n =PI = q. Moreover, if 4 is sufficiently small, P/ < r for all t € [s.54n;+7].
Repeating the argument, PP < r for all t € [s+m +n, s+ K(n +n)] for any K € N.

Therefore, P, = r is not possible for any u € R. A contradiction.

Similar argument holds for the reverse inequality. ]

LeMMA 15. If Py=p and P, = q < (>)p. Then, v = 1(0) for a.e. s € [0,t].

Proof. Let us argue when g < p. The reverse argument is identical. Suppose v} # 1 for
a.e. s € [0,t]. Let A:= {s:~F = 0}. By hypothesis, £([0,t]) > ¢(A) > 0. By Lemma
14, P; is decreasing in s. Therefore, for any interval [t1,ts] C [0, ], fttf vids < 0. That
is, £([t1, t2]\A) > (AN [t1,ts]). Therefore, (AN [t1,to]) < 20([t1, to].

Once again, by the Lebesgue density theorem,

lim (AN[s—¢€5+¢€])
el0 2€

=1

for a.e. s € A. Therefore, {(AN[s — €, s+€) < 20([s — €, 5 + €] is not possible.

]

COROLLARY 3. [In the optimal policy, only one of the following happens (in the absence
of conclusive news):

1. “Always look for S”: vf =1 for all t. Beliefs move down until pg.

2. “Look for F and freeze”: ~; = 0 if P, < p’ and v} = v/ otherwise. Beliefs move
up and freeze at p/ (Corollary 2).

3. “Look for S and freeze”: v = 1 if P, > p/ and v = v/ otherwise. Beliefs move
down and freeze at p'.

4. “Always look for F”: v; =0 for all t. Beliefs move up.

CramM 8. “Always look for F” is never optimal.
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Proof. This is obvious as looking for F can only produce v < 0 while incurring the
cost. So J(p,v5) < 0 < V(p) where g is the constant control of v = 0, i.e. looking
for failure. [

Recall that Veg(p) is the value delivered by the “FS policy with a switch at p/
(8), while Vg(p) is the value function of the policy of using only the success arm and
stopping at the optimal stopping cutoff as in Keller et al. (2005), refer to Proposition
1 for details).

LEMMA 16. V() = maX{Vs('), Vps()}

Proof. By Corollary 3, the optimal policy must either be either looking for S forever
or a FS policy with a switch at p/. The former delivers the value of Vs(-) while the
latter delivers Vrg(+). Moreover, if V(p) = 0 it is optimal to quit and take the outside
option. ]

LEMMA 17. If Vs(q) = Vrs(q) for some q € [p/,1) then Vs(q) = Vrs(q) for all
q € [p,1].

Proof. Suppose, Vs(q) = Vrs(q) for some ¢ € [p/,1). On (p/, 1), both Vs(+) and Vig(-)
satisfy the following differential equation.

f(p) =—c+ Agp(v' = f(p)) — Agp(L = p) f'(p)
= A+ (14 A0)f ()
Agp(1 —p)

Standard results in the theory of first order linear differential equations imply that if
f, g satisfy the above and f(z) = g(x) for some z € (p/, 1), then f(-) = g(-) on (p/, 1).

]

LEmMMA 18. V(p) = Vps(p) > 0 = V(q) = Vrs(q) for all g > p.

Proof. Suppose V(p) = Vps(p) for some p and for some ¢ > p V(q) = Vs(q) > Vrs(q).
By Lemma 17, if Vg(-) and Vpg(-) intersect, they must intersect before p/. Therefore,

q<p

First, it is without loss to follow the control affs starting from p to deliver V (p).
Let T be the time it takes for the beliefs to reach ¢ starting from p if the agent follows
a; = 1 and 4 = 0. Consider the following control o’ such that a; = 1 whenever
PP > pg and

M =

, 0 ift<T
1 ift>Tand P, > pg
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Therefore,
T
V(p) = J(p, ) =/ (1 =p)he M (1 —e ) (=e)dt + [p+ (1 = p)e ™ e T Vis(q)
0

< /0 (1—p)(1— e_t))\be_’\"t(—c)dt +[p+(1- p)e_’\bT]e_TVg(q)
= J(p,a)

A contradiction. N
Below, we prove Proposition 4 using the series of results so far.

Proof of Proposition j. By Lemma 16, we have V() = max{Vs(:), Vrs(-)}. By Lemma
18,if 0 < V(p) = Vrs(p) = V(q) = Vrs(q) for all ¢ > p. Therefore, we have only
three possibilities:

1. V(-) = Vs(:). Here, the optimal policy is a”.

2.

\% if p<
v =) ifrsm
Vrs(p) ifp>mp

. . . SFS
Here, the optimal policy is o
FS‘

3. V(:) = Vps(:). Here, the optimal policy is o s

C. Proofs from Section 4

Proof of Proposition 7. First, fix a A, ¢ such that v° + 1+C,\g > 0.

The objective is to produce two values of v! :=T' — 1, say vi, vs, such that, ceteris

paribus, when v' = v}, a*(vj) = @” and a*(v3) = a %" To get @” to be optimal, a
sufficient condition is V/(1) < 0. Notice that,
1 Ag
V(1) = Agvt — (1 +3%)c
Ag
1+ b + Ay

Choose v so that Agvf € (¢, (1+ :\\—Z)c), we can satisfy Assumption 2 and have v/ (1) <

0. Therefore, for any such v{, a*(vi) = a®.

For v}, notice that

Aot —c— (14 2, )0°
TP cpf) =" 4 p | = +(/\ V| Jso ()
g

3Tn this context, a*(v) denotes the optimal policy in Proposition 4 when v! = v.
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pointwise as \, — co. We would like to emphasize that p/ changes with \, above, and
therefore so does J(-, af}s ). Notice that

Joo(ps) = v" + [Ag = (c+ (L4 A)0") /0]

_°
Ag(1+2g)

Again, we emphasize that pg changes with v;. Therefore, in the absence of uniform
convergence, we need to have the correct order of limits in order to obtain the right
optimal policy. Therefore, we first choose v! large enough so that J.,(ps) > 0. Let this
by vs. Fixing vl also fixed pg, and therefore, we can invoke the pointwise convergence
to argue that 3\, such that J(ps, affs) >0 as J(ps, agfs) — Joo(ps)-

Moreover, for any finite A, ¢, (1 + i—i)c) is non-empty. Therefore, we have found v1,
vd, and )\, such that a*(v!) = o and a*(vd) = agfs. Lastly, v +1 =T, k € {1,2}
give I'1, I'y stated in the statement of Proposition 7.

]
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